EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN

June 2002

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS 6688

Paper No. S6

www.mymathscloud.com

Question number	Scheme		Marks
١а	(a) parametric - tests the value of a parameter when you know the distribution (or can apply the central limit theorem)	B1	
ь	non-parametric - tests the value of a parameter when you don't know the distribution (b) The Wilcoxon rank sum test is used in two sample problems and the Wilcoxon signed-ranks test is used in one sample problems and in matched pairs problems.	B1 B1 (need are sample &	(2)
	<u> </u>	matchas	· · · · · · · · · · · · · · · · · · ·
2.	H_0 m_V - m_A = 0	B1 B1	
	+++-+-++		
	X represents the number of \pm signs $X \sim \mathrm{B}(8,1/2)$	mi Alama	
	$P(X \ge 6) = 1 - P(X \le 5) = 0.1445; > 0.05$		
	There is not enough evidence to reject H_0 . Objects presented visually are not recalled more accurately than objects presented aurally.	A1✓	(8)
,			
	,		

WWW. MY WALLS COUNTY COM

Stewart House 32 Russell Square London WC1B 5DN

June 2002

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS 6688

Paper No. S6

Question number	Scheme		Marks
3.	H_0 : median =72	B1	
	H_1 : median $\neq 72$	B1	
	values -12 -9 3 -2 -8 -22 -5 6 -7 1 rank 9 8 <u>3</u> 2 7 10 4 <u>5</u> 6 <u>1</u>	M1 M1	
	$S^+=9$	A1	
	n = 10. At 0.025 $S = 8$	B1	
- ;	there is not enough evidence to reject H_0 that the median = 72	M1 A1√	(8)
lra	(a) $\hat{\beta} = \frac{S_{tw}}{S_{tt}} = \frac{12.5}{6.8} = 1.84$	M1 A1	
	$\widehat{\alpha} = \underbrace{0.483}_{0.483}$	A1	(3)
la la	(b) $H_0: \beta = 1.5$ $H_1: \beta \neq 1.5$ both	B 1	
	RSS = $42.3 - \frac{(12.5)^2}{6.8} = 19.32205$	M1 A1	
	$s^2 = 2.415257$ $rac{1.55}{1.55}$	A1	
	$t = \frac{1.838 - 1.5}{1.55 / \sqrt{6.8}} = 0.56753 \dots$ $0.567 - 0.57$	M1 A1	
	Since $0.5672 < 2.306$, accept H_0 that $\beta = 1.5$	WI V	(8)
(F)	41: 6 = 135 H1: 8>1.5	ŀ	
	the 0.5672 < 1.860 except to that B=1-5	·	

MMN. MY MATHS COULD COM

Stewart House 32 Russell Square London WC1B 5DN

June 2002

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS 6688

Paper No. S6

Question number	Scheme		Marks
5. a	(a) $p = \frac{200}{250 \times 10} = 0.08$ (b) action limits are $0.08 + 1.96\sqrt{\frac{0.08 \times 0.92}{250}}$ i.e. 0.114 awrt	Alv	(2)
a d	warning limits are $0.08 + 2.3263\sqrt{\frac{0.08 \times 0.92}{250}}$ 2.3263 i.e. 0.120 a \sim ** See graph paper (c) Points plotted (d) The process is performing within acceptable limits so far.	AI AI BI	(1) (2) (1)

EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN

June 2002

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS 6688

Paper No. S6

www.mymathscloud.com

Question number	Scheme		Marks
60,		B1 M1 5 dea	, *
	T = 1 + 2 + 3 + 6 + 8 $= 20$		
	Two tail test therefore use $2\frac{1}{2}$ % critical value is 20	B1	
	20 is in the critical region and therefore we reject H ₀ in favour of H ₁ . There is evidence that there is a difference between the time girls and boys take to solve the puzzle.	A 1√	(7)
ь	(b) H ₀ : median of girls = median of boys. H ₁ : median of girls > median of boys. both	B1	
	$n_1 = 25$ $n_2 = 25$ N (637.5, 2656.25) T = 798	M1 A1 A1	
	$\frac{797.5 - 637.5}{\sqrt{2656.25}} = 3.104$	M1 A1 ± ¥	
	one tail test 5% significance level critical value = 1.64:49	B1	
Programme and the state of the	3.104 > 1.645 there is evidence boys are quicker at solving the puzzle than girls.	A1 🖍	(8)

MMN. My Maths Cloud Com

Stewart House 32 Russell Square London WC1B 5DN

June 2002

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS 6688

Paper No. S6

uestion umber			Scheme				Marks
70	(a) Allocate bunches	of flow	ers at rando	om, 4 to eac	ch liquid.	B1 B1	(2)
ь	(b) Randomised bloc	k design	l <u>-</u>			Bl	(1)
C	(c) A B W 12 13 L & W 14 15 W + C 13 16 Total 39 44 Correction Factor =	9 5 10 11 4 30	D Total 10 44 9 48 10 50 29 142 = 1680.33				
	\hat{T} otal SS = 1742 - 1	680.33 :	= 61.67			M1	
	Type $SS = \frac{1}{3} \{39^2 +$	-44 ² +30	$9^2 + 29^2$ } - 10	680.33 = 52	2.33	M1	
ACT TO REPORT THE PARTY OF THE	Type $SS = \frac{1}{3} \{39^2 + 1\}$ Liquid $SS = \frac{1}{4} \{44\}$	-	^			M1 M1	
	· J	-	^			M1	
ACT THE PROPERTY OF THE PROPER	Liquid SS = $\frac{1}{4}$ {4	4 ² +48 ²	+50 ² } - 16	80.33 = 4.6	6 6		·
	Liquid SS = $\frac{1}{4}$ {4	$4^2 + 48^2$ df	+50 ² } - 16	80.33 = 4.6 MSS	S & Ratio	M1	
	Liquid SS = $\frac{1}{4}$ {4 Source	$4^2 + 48^2$ df 3	+50 ² } - 16 ³ \$S 52.33	MSS 17.44	Ratio 22.43	M1	

EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN

June 2002

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS 6688

Paper No. S6

www.mymathscloud.com

, ao jour 15 2 1 1	T11ST1CS 6688		Paper No. S
Question number	Scheme		Marks
7 co-t	H_0 : Liquids do not affect length of time flowers live. H_1 : Liquids do affect length of time flowers live. $F_6^2 > 10.9$	B1	
d	3 is not in critical region therefore not enough evidence to reject H ₀ , the liquid has no affect an element of time flowers live. (d) H ₀ : Different types of flowers do not live different lengths of times. are the two live different lengths of times.	A1 🖍	(11)
	$F_6^3 > 9.78$	BI	
	22 4=22:4282 is in the critical region so there is evidence to	M1	
	reject H ₀ Different types of flowers do live different lengths of time.	A1 🖍	(0)
)			(3)